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A practical approach to the determination of 
the crystallography of grain boundaries 

VALERIE  RANDLE ,  BRIAN RALPH 
Department of MetaUurgy and Materials Science, University College, Cardiff, UK 

Methods available for determining the crystallography of grain boundaries are surveyed. It is 
suggested that the reason why relatively few studies of the crystallography of large numbers of 
boundaries have been made is the intensity of labour involved in the data analysis. A scheme 
is described which allows a large sample population of grain boundaries to be handled with 
maximum efficiency, whilst maintaining high precision in the parameters which describe the 
boundary. It also permits a comparison of these parameters with those which describe special 
cases (e.g. high-density coincidence site lattice, etc). The method involves a combination of 
stereographic manipulation and matrix algebra. 

1. Introduct ion 
In recent years, models of  grain-boundary structure 
have been considerably extended. The coincidence site 
lattice (CSL) representation has tended to predomi- 
nate as the basis of  the more significant models of 
grain-boundary geometry (e.g. [1-4]). CSL bound- 
aries have special properties and are often associated 
with low energies [5]. An axis of  misorientation/angle 
of misorientation pair is commonly used to describe 
the relationship between two grains; the axis of mis- 
orientation, l, is a direction which is common to both 
grains about which the first grain must be rotated by 
the angle of  misorientation, O, in order to achieve the 
orientation of  the second. 

The collection and analysis of experimental 
misorientation data has not received as much atten- 
tion as has the development of  theoretical boundary 
models. Most of  the experimental support for these 
models arises from studies on especially prepared and 
oriented bicrystals [6]. The absence of  data which 
relate to more common materials in their polycrystal- 
line form reflects the labour-intensity of  producing 
accurate crystallographic results in these cases. 

This paper describes a method whereby diffraction 
data from large sample populations of  boundaries 
may be collected efficiently and analysed to supply 
both an axis/angle pair and a correlation with a CSL 
representation of  each boundary. 

2. Experimental  procedure 
A commercially produced alloy, Nimonic PE16 
(Henry Wiggin & Co., Hereford, UK) was investi- 
gated and diffraction data taken from about one 
hundred boundaries, as part of  an ongoing investi- 
gation into grain-boundary structure as a function 
of  ageing parameters for this alloy. [7]. Experimental 
work was carried out on a Philips 400T transmission 
electron microscope. Results were processed using a 
Tektronix 4051 microcomputer. 

3. Methods  available for the analysis of 
gra in-boundary  geometry  

Two basic approaches exist for the determination of 
axis/angle pairs from diffraction patterns. Firstly, an 
analytical approach such as that due to Young et al. 
[8] characterizes the misorientation by a 3 x 3 matrix 
whose columns represent the direction cosines of 
Grain 1 referred to Grain 2. The simplest case of  a 
twin boundary in the cubic system is used here as an 
example. For  this case, one in three atomic sites are 
common to both crystals and therefore it is referred to 
as a Z = 3 boundary*. Fig. 1 shows how Grain 2 may 
be rotated into Grain 1 through an angle of 60 ~ about  
the [1 1 1] misorientation axis, which, by definition, is 
common to both crystals. The matrix which describes 
this rotation is given by 

R = 3  2 2 i (1) 
1 2 2 

The second approach which can be used to yield 
misorientation data relies on standard stereographic 
procedures. Of the methods using stereographic 
manipulation perhaps the best known is that due to 
Goux [9]. Two pairs of  diffraction patterns from each 
side of the boundary are required. This method is 
based on the fact that the pattern zone axes in both 
grains (A1 and A2) must be parallel, from which it 
follows that the axis of  misorientation lies on a zone 
which is equidistant from AI and A2. In turn this zone 
is represented on the stereogram as the great circle 
which bisects the great circle through A1 and A2. 

If a similar treatment is applied to the second pair 
of zone axes B1 and B2, the axis of misorientation, l, 
is given by the intersection of  the zones which bisect 
A 1, A2 and B 1, B2, respectively. The angle of  rotation 
0 is found from projecting A1 and A2 on to the zone 
which contains the pole of l (Fig. 2). The angle 
between A'I  and A'2 defines 0. 

*In the CSL model 22 is merely defined as the reciprocal of the density of common sites. 
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Figure 1 Stereographic represen- 
tation of a twin-related bicrystal. 
A clockwise rotation of 60 ~ about 
the 1 1 1 axis - common to both 
crystals - rotates the 2 ] 2, ]" 2 2 
and 2 2 ]" directions in Crystal 2 
on to the crystal axes of Crystal 1. 
(0)  Grain 1, (o) Grain 2. 

A less wide ly  k n o w n  m e t h o d  is t h a t  due  to  R a l p h  

[1(9]. I t  r equ i res  the  k n o w l e d g e  o f  three  pa i r s  o f  n o n -  

t a u t o z o n a l  d i r ec t i ons  o r  p l a n e  n o r m a l s  w h i c h  h a v e  the  

s a m e  indices  in b o t h  crys ta ls .  U s u a l l y ,  the  c rys ta l  axes  

are  se lected,  a n d  these  are  p lo t t ed  in pa i rs  on  the  

s t e r e o g r a m  (h k 1)1 and  (h k 1)5, etc. 

W h e n  b o t h  g ra in s  a re  r o t a t e d  on  to a c o m m o n  

re fe rence  f r a m e  (e.g. the  edges  o f  the p h o t o g r a p h i c  
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Figure 2 Determination of the 
misorientation parameters for 
Boundary 4 using the Goux 
stereographic method. AI, A2, 
and B 1, B2 are two pairs of paral- 
lel directions in Grains 1 and 2. 
The axis of misorientation, 1, is 
defined by the intersection of 
great circles which bisect AI, A2 
and B1, B2. The angle of mis- 
orientation, 0, is given by the 
angle between A'I and A'2 where 
A'I and A'2 are the projections of 
A1 and A2 into the invariant 
plane, i.e. the great circle of which 
l is the pole. 
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Figure 3 Determination of the 
misorientation parameters for 
Boundary 3 using the Ralph 
stereographic method. The crys- 
tal axes of ( 0 )  Grain 1 and (e) 
Grain 2 have been rotated on to a 
common reference frame X YZ.  
P1 and P2 are the poles of great 
circles containing l, 01 01 and l, 
0 1 02, respectively, where the sub- 
scripts refer to Grains 1 and 2. 
The axis of misorientation, /, is 
defined by the intersection of great 
circles which bisect 001~ and 
001z, 0101 and 0102, 1001 and 
1002 . The angle of misorientation, 
0, is given by the angle between 
P1 and P2. 

plate) the axis ofmisorientation, l, lies on a zone which 
is equidistant from each pair of directions/plane nor- 
mals. Since there are three such pairs, l is defined 
accurately as the intersection of the great circles which 
bisect the pairs (hkl)l to (hkl)2, etc. The angle 
between the poles Pl and P2 of great circles containing 
l, (hkl)~ and l, (hkl)2, respectively, gives 0 (Fig. 3). 

4. Procedure for geometrical analysis of 
grain boundaries 

4.1. Acquisition of diffraction data 
The axis/angle pair determination depends firstly 
upon the generation of precise diffraction data in 
order to define accurately the orientation from both 
sides of a grain boundary. In the transmission electron 
microscope (TEM) this is most easily achieved by use 
of microdiffraction with a convergent probe. Several 
reviews of microdiffraction have been published (e.g. 
[11, 12]). Essentially, the convergent probe relaxes the 
conditions necessary for the excitation of Kikuchi 
lines as compared to their generation by conventional 
selected-area diffraction. This imposes far less restric- 
tions upon the thickness of crystal from which accu- 
rate diffraction data may be collected. Fig. 4 shows 
two examples of pattern pairs, which have been used 
to analyse Boundaries 3 and 4 in Table I. The first pair 
(Figs 4a and b) arise from near the foil edge where the 
crystal is thin enough for discrete diffraction maxima 
(discs) to be visible. Figs 4c and d have been taken 
from thicker regions of crystal, and now the Kikuchi 
line visibility predominates over that of the diffraction 
discs. 

There are other advantages associated with the use 

of microdiffraction for this work. The use of a well- 
aligned microscope permits calibration of the recipro- 
cal lattice section for a particular camera length. It 
then becomes a simple matter to transfer accurate 
beam directions directly to the stereogram. In practice 
it was found helpful to tilt to an on-zone pattern (e.g. 
Fig. 4c) or to the situation where a major Kikuchi line 
pair is excited (e.g. Fig. 4b) in one grain. Furthermore, 
if the microscope is operated using a low camera 
length, enough of the reciprocal lattice section is vis- 
ible on the plate to be able to determine the absolute 
beam direction. By contrast, in selected-area diffrac- 
tion a 180 ~ ambiguity exists so that it is necessary to 
take pairs of diffraction patterns from each grain 
before and after a tilt of the specimen. This establishes 
whether the beam direction for each crystal lies in a 
right-hand or left-hand unit stereographic triangle 
[13]. This difficulty does not arise in microdiffraction 
patterns and so, in general, a single pair of patterns 
across the boundary suffices. A camera of nominal 
length 210ram was adopted for the investigation 
reported here. 

4.2. Processing of the diffraction da ta  
The procedure for the determination of axis/angle 
pairs by the Ralph method was outlined earlier 
(Section 3). This method has been used during the 
present study rather than the Goux or matrix algebra 
methods, because it contains a built-in check of the 
accuracy. Fig. 3 illustrates the application of the 
Ralph method. If  the data have been plotted accu- 
rately and no errors have been made, the mis- 
orientation axis will be represented as the point of 
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Figure 4 (a, b) Microdiffraction 
pat terns  f rom either side of  
Boundary  4, where the crystal is 
relatively thin, therefore discrete 
diffraction discs are visible. (c, d) 
Microdiffraction pat terns  f rom 
either side of  Boundary  3, where 
the crystal is relatively thick, 
therefore Kikuchi line visibility is 
enhanced in compar i son  to (a) 
and (b). 

intersection of three great circles. These great circles 
represent the loci of poles which make equal angles 
with equivalent poles, (hkl)l and (hkl)2, in the two 
grains. Any inaccuracy will result in a triangle of 
uncertainty for I. During this study, which involves the 
analysis of about 100 boundaries [7], the maximum 
angular size of this triangle of uncertainty was 1 ~ while 
for 74% of the cases analysed the triangle was too 
small to measure. Clearly the accuracy of this analysis 
also depends on the ability to establish the reference 
frame system precisely. Here the likely difficulty arises 
from any twisting of the photographic plate in the 
camera system of the microscope. In practice in the 
studies reported here, this did not seem to give rise to 
any measurable inaccuracy. 

A few boundaries were analysed by the Goux 
method for comparison with the Ralph method. The 
misorientation relationships obtained for both are 
listed in Table I. 

4.3. Comparisons of the experimental 
misorientation data with those predicted 
by CSL theory 

The axis/angle pair representation of grain-boundary 
misorientation is only meaningful if it can then 
be used to determine the "class" of a boundary, 
e.g. random, low-angle or special (near a CSL orien- 
tation) (e.g. [3]). Therefore the next stage in the 
grain-boundary analysis scheme reported here was the 
design of a computer program which outputs the 

T A B  L E I I l lustration of  the use of  the Ralph and G o u x  methods  for the determinat ion of  grain boundary  parameters  

Boundary  Axis/angle pair CSL description CSL 
No.  of  boundary  limit 

G o u x  method Ralph method 

Actual dura t ion  of  
bounda ry  f rom 
exact CSL 

1 0.927, 0.342, 0.105/58 ~ 0.900, 0.342, 0.301/60 ~ Z 9 = 3 1 1/67.11 ~ 5.0 ~ 5.4 ~ 
1.00 , 0.761, 0.049/43.8 ~ E 9 = 1 1 0/38.94 ~ 5.0 ~ 5.9 ~ 

2 0.866, 0.367, 0.309/22 ~ 0.866, 0.399, 0.309/35.5 ~ ~;3 3 = 3 1 1/33.60 ~ 2.6 ~ 2.1 ~ 
3 0.883, 0.375, 0.035/16 ~ 0.980, 0.130, 0.105/22.3~ 521 3 = 1 00/22.62 ~ 4.2 ~ 3.1 ~ 
4 0.898, 0.357, 0.191/30 ~ 0.823, 0.545, 0.191/38 ~ R a n d o m  
5 0.707, 0.574, 0.431/18 ~ ~23 1 = 1 1 1/17.9 ~ 2.7 ~ 2.7 ~ 
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Figure 5 Stereographic represen- 
tation of  (e )  Boundary 5, 0.707, 
0.574, 0.431/18 ~ and (I1,) a 
Z = 31 CSL, 111/17.9 ~ with 
Grain 2 referred to the crystal 
axes of  Grain 1. The deviation 
between the experimental and 
CSL boundary is 2 to 3 ~ despite 
the fact that the angular  dif- 
ference between their respective 
axes of  misorientation (l and l') is 
11.2 ~ 

deviation of  a particular boundary from the nearest 
CSL and assesses the significance of this deviation. 
The steps involved in compiling this program are 
outlined below. 

The first part  of  the program implements Ran- 
ganathan 's  function [1] in order to generate all poss- 
ible values of  0 and Z for a particular l (with indices 
H K L ) ,  up to operator-specified limits. In the cubic 
system values for 0 and E are derived thus: 

= x 2 + ( H  2 + K 2 + L 2 ) f  (2) 

0 = 2 tan-J Y 
x (H 2 + K 2 + L2) 1/2 (3) 

where x and y can have values ~> 0. 
It  is necessary to make a subjective choice for the 

nearest CSL to an experimental boundary.  Unless 
H K L  is near a high-symmetry axis (e.g. Boundaries 1, 
2 and 3 in Table I which are obviously near 3 1 1, 3 1 1 
and 1 00, respectively) two or more potential~CSL 
solutions should be selected. The correct choice (i.e. 
the closest "fit" to the experimental boundary)  is 
apparent  after running the program using each poten- 
tial CSL in turn. This is illustrated with reference to 
Boundary 5 in Table I. It  is not obvious from inspec- 
tion that the axis/angle pair 0.707, 0.574, 0.431/18 ~ 
can be described as the 1 1 1/17.9 ~ solution of a 
Y~ -- 3 1 boundary,  since the misorientation axis is 
11.2 ~ removed from 1 1 1. Fig. 5 shows a stereographic 
representation of  both the experimental and the CSL 
case, which clearly demonstrates that the boundary is 
in fact close to a E = 3 1 CSL. 

From consideration of  how closely secondary 

intrinsic grain-boundary dislocation cores in a CSL 
boundary may approach before overlap begins, the 
angular limit for a CSL description is generally 
assumed to be [14, 15] 

V = VoY~ -'/2 (4) 

where V is the CSL angular limit and V0 is the angular 
limit for the low-angle boundary description. It  is 
intended as a guide only, particularly since V 0 is 
approximate.  Boundary 1 in Table I has been ana- 
lysed using a second symmetry-related variation 
of its axis/angle pair, which can be described by two 
solutions for a Y~ = 9 CSL. The computat ions for 
each case differ by 0.5 ~ (final column of Table I), 
which highlights the approximate  nature of  the CSL 
limit criterion. 

The most  efficient way of comparing an experi- 
mental determination of  boundary misorientation 
with the predicted important  CSL descriptions is 
to use a rotation matrix description for both. Such a 
rotation matrix, whose columns are the direction 
cosines of  Grain 1 referred to the crystal axes of  
Grain 2, can be formulated by application of spherical 
tr igonometry (e.g. [16, 17]). 

The matrix elements for the cubic case are given by 

Rll = P~(1 -- cos0 )  + c o s 0  

Rl2 = P]P2 (1 -- cos 0) - -  P3 sin 0 

RI3 ---- P1P3 (1 - cos 0) + P2 sin 0 

R21 = P 2 P  l (1 -- cos0 )  + P 3 s i n 0  

R2 2 = p2 (1 -- cos 0) + COS 0 
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R23 -- P2P3 (1 - cos 0) - P1 sin 0 

R31 = P3PI (1 - cos 0) - P2 sin 0 

R32 -- P3P2 (1 - cos 0) + P1 sin 0 

R33 = P~ (1 - cos 0) + cos 0 

(5) 
where P~, P2, P3 a re  vector components of the rotation 
axis P, which is defined as a unit vector. 

For a cubic crystal, there are 24 equivalent 
symmetry-related solutions for a misorientation 
relationship. An example of a complete list of all 
24 variations, plus each symmetry operation, has 
been published by Pumphrey and Bowkett [18] for 
a Z = 21, 1 1 2/44.42 ~ boundary and by Randle 
and Ralph [19] for a Z = 5 boundary. By conven- 
tion, the axis/angle of misorientation is usually but 
not invariably adopted. It is therefore necessary to 
generate matrices of the complete set of 24 axis/angle 
pairs in order to choose that solution whose leading 
diagonal contains the three largest matrix elements, 
since the angle and axis of misorientation can be 
obtained from the transformation matrix thus [20]: 

0 = COS -1 (Rl l  ~- R22 --}- R33 - -  1)/2 

(6) 

H : K : L  = R21 --  RI2:R13 - -  R31:R32 - -  R23 

(7) 
The second part of the computer program is 

designed to premultiply the transformation matrix 
by each orthogonal matrix which represents a 
symmetry operation in turn [16]. When the axis/ 
angle pair is in its lowest-angle form, clearly any 
low-angle boundary situations are immediately 
identified. 

Once matrices have been formulated for the experi- 
mental and CSL case, a direct comparison can be 
made by calculation of the angular difference between 
the column of the CSL matrix with the respective 
columns of the experimental matrix. With reference to 
Boundary 5, which is illustrated in Fig. 5, the appro- 
priate matrices are 

0.975 -0.113 0.191 ~ 

Rexpt" = 0.152 0.967 --0.205] 
/ 

--0.161 0.229 0.960/ 

0.968 --0.161 0.194~ 

Rcsr = 0.194 0.968 --0.161/ 
! 

--0.161 0.194 0.968/ 

which yields an average variation of 2.7 ~ between the 
CSL and experimental case. From the Brandon cri- 
terion, this is within the limit for a CSL description. 

5. Concluding remarks 
A scheme has been described whereby microdiffrac- 
tion data may be processed to produce accurate 
geometrical analyses of large numbers of grain bound- 

aries in polycrystalline materials. On balance the 
stereographic manipulation procedure suggested by 
Ralph was considered to be optimal, despite the fact 
that the misorientation data are subsequently required 
in matrix form for comparison with high-density CSL 
cases. The justification for use of this stereographic 
method lies in its facility to self-check, and in its ease 
of application. The remaining steps necessary to com- 
pare experimental results with CSL theory have been 
described in some detail here. The program produces 
the required geometrical data with operator control 
only necessary for the initial choice of the high-density 
CSL which is closest in angular terms to the experi- 
mental boundary. 
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